Online EM Algorithm for Latent Data Models
نویسندگان
چکیده
In this contribution, we propose a generic online (also sometimes called adaptive or recursive) version of the Expectation-Maximisation (EM) algorithm applicable to latent variable models of independent observations. Compared to the algorithm of Titterington (1984), this approach is more directly connected to the usual EM algorithm and does not rely on integration with respect to the complete data distribution. The resulting algorithm is usually simpler and is shown to achieve convergence to the stationary points of the Kullback-Leibler divergence between the marginal distribution of the observation and the model distribution at the optimal rate, i.e., that of the maximum likelihood estimator. In addition, the proposed approach is also suitable for conditional (or regression) models, as illustrated in the case of the mixture of linear regressions model.
منابع مشابه
SpectralFPL: Online Spectral Learning for Single Topic Models
We study the problem of learning a latent variable model from a stream of data. Latent variable models are popular in practice because they can explain observed data in terms of unobserved concepts. These models have been traditionally studied in the offline setting. The online EM is arguably the most popular algorithm for learning latent variable models online. Although it is computationally e...
متن کاملStochastic Discriminative EM
Stochastic discriminative EM (sdEM) is an online-EM-type algorithm for discriminative training of probabilistic generative models belonging to the natural exponential family. In this work, we introduce and justify this algorithm as a stochastic natural gradient descent method, i.e. a method which accounts for the information geometry in the parameter space of the statistical model. We show how ...
متن کاملOnline EM Algorithm for Hidden Markov Models
This paper is about the estimation of fixed model parameters in hidden Markov models using an online (or recursive) version of the Expectation-Maximization (EM) algorithm. It is first shown that under suitable mixing assumptions, the large sample behavior of the traditional (batch) EM algorithm may be analyzed through the notion of a limiting EM recursion, which is deterministic. This observati...
متن کاملOnline Expectation Maximization based algorithms for inference in hidden Markov models
The Expectation Maximization (EM) algorithm is a versatile tool for model parameter estimation in latent data models. When processing large data sets or data stream however, EM becomes intractable since it requires the whole data set to be available at each iteration of the algorithm. In this contribution, a new generic online EM algorithm for model parameter inference in general Hidden Markov ...
متن کاملTopic-based language models using EM
In this paper, we propose a novel statistical language model to capture topic-related long-range dependencies. Topics are modeled in a latent variable framework in which we also derive an EM algorithm to perform a topic factor decomposition based on a segmented training corpus. The topic model is combined with a standard language model to be used for on-line word prediction. Perplexity results ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0712.4273 شماره
صفحات -
تاریخ انتشار 2007